1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
//! 解析 DWARF 编码的数据流的实用工具。
//! 参见 <http://www.dwarfstd.org>,DWARF-4 标准第 7 节 - "Data Representation"
//!

// 目前,此模块仅由 x86_64-pc-windows-gnu 使用,但是我们在各处编译它,以避免出现回归。
//
#![allow(unused)]

#[cfg(test)]
mod tests;

pub mod eh;

use core::mem;

pub struct DwarfReader {
    pub ptr: *const u8,
}

#[repr(C, packed)]
struct Unaligned<T>(T);

impl DwarfReader {
    pub fn new(ptr: *const u8) -> DwarfReader {
        DwarfReader { ptr }
    }

    // DWARF 流已被包装,因此,例如 u32 不必在 4 字节边界上对齐。
    // 这可能会在具有严格对齐要求的平台上引起问题。
    // 通过将数据包装在 "packed" 结构体中,我们告诉后端生成 "misalignment-safe" 代码。
    //
    pub unsafe fn read<T: Copy>(&mut self) -> T {
        let Unaligned(result) = *(self.ptr as *const Unaligned<T>);
        self.ptr = self.ptr.add(mem::size_of::<T>());
        result
    }

    // 7.6-"可变长度数据" 节中定义了 ULEB128 和 SLEB128 编码。
    //
    pub unsafe fn read_uleb128(&mut self) -> u64 {
        let mut shift: usize = 0;
        let mut result: u64 = 0;
        let mut byte: u8;
        loop {
            byte = self.read::<u8>();
            result |= ((byte & 0x7F) as u64) << shift;
            shift += 7;
            if byte & 0x80 == 0 {
                break;
            }
        }
        result
    }

    pub unsafe fn read_sleb128(&mut self) -> i64 {
        let mut shift: u32 = 0;
        let mut result: u64 = 0;
        let mut byte: u8;
        loop {
            byte = self.read::<u8>();
            result |= ((byte & 0x7F) as u64) << shift;
            shift += 7;
            if byte & 0x80 == 0 {
                break;
            }
        }
        // sign-extend
        if shift < u64::BITS && (byte & 0x40) != 0 {
            result |= (!0 as u64) << shift;
        }
        result as i64
    }
}