结构化数据
对非结构化 JSON 序列化和反序列化
serde_json
crate 提供了 from_str
函数来解析 JSON 切片 &str
。
非结构化 JSON 可以被解析为一个通用的 serde_json::Value
类型,该类型能够表示任何有效的 JSON 数据。
下面的实例展示如何解析 JSON 切片 &str
,期望值被 json!
宏声明。
use serde_json::json;
use serde_json::{Value, Error};
fn main() -> Result<(), Error> {
let j = r#"{
"userid": 103609,
"verified": true,
"access_privileges": [
"user",
"admin"
]
}"#;
let parsed: Value = serde_json::from_str(j)?;
let expected = json!({
"userid": 103609,
"verified": true,
"access_privileges": [
"user",
"admin"
]
});
assert_eq!(parsed, expected);
Ok(())
}
反序列化 TOML 配置文件
将一些 TOML 配置项解析为一个通用的值 toml::Value
,该值能够表示任何有效的 TOML 数据。
use toml::{Value, de::Error};
fn main() -> Result<(), Error> {
let toml_content = r#"
[package]
name = "your_package"
version = "0.1.0"
authors = ["You! <you@example.org>"]
[dependencies]
serde = "1.0"
"#;
let package_info: Value = toml::from_str(toml_content)?;
assert_eq!(package_info["dependencies"]["serde"].as_str(), Some("1.0"));
assert_eq!(package_info["package"]["name"].as_str(),
Some("your_package"));
Ok(())
}
使用 Serde crate 将 TOML 解析为自定义的结构体。
use serde::Deserialize;
use toml::de::Error;
use std::collections::HashMap;
#[derive(Deserialize)]
struct Config {
package: Package,
dependencies: HashMap<String, String>,
}
#[derive(Deserialize)]
struct Package {
name: String,
version: String,
authors: Vec<String>,
}
fn main() -> Result<(), Error> {
let toml_content = r#"
[package]
name = "your_package"
version = "0.1.0"
authors = ["You! <you@example.org>"]
[dependencies]
serde = "1.0"
"#;
let package_info: Config = toml::from_str(toml_content)?;
assert_eq!(package_info.package.name, "your_package");
assert_eq!(package_info.package.version, "0.1.0");
assert_eq!(package_info.package.authors, vec!["You! <you@example.org>"]);
assert_eq!(package_info.dependencies["serde"], "1.0");
Ok(())
}
以小端模式(低位模式)字节顺序读写整数
字节序 byteorder
可以反转结构化数据的有效字节。当通过网络接收信息时,这可能是必要的,例如接收到的字节来自另一个系统。
use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
use std::io::Error;
#[derive(Default, PartialEq, Debug)]
struct Payload {
kind: u8,
value: u16,
}
fn main() -> Result<(), Error> {
let original_payload = Payload::default();
let encoded_bytes = encode(&original_payload)?;
let decoded_payload = decode(&encoded_bytes)?;
assert_eq!(original_payload, decoded_payload);
Ok(())
}
fn encode(payload: &Payload) -> Result<Vec<u8>, Error> {
let mut bytes = vec![];
bytes.write_u8(payload.kind)?;
bytes.write_u16::<LittleEndian>(payload.value)?;
Ok(bytes)
}
fn decode(mut bytes: &[u8]) -> Result<Payload, Error> {
let payload = Payload {
kind: bytes.read_u8()?,
value: bytes.read_u16::<LittleEndian>()?,
};
Ok(payload)
}